
An approach to discrete adjoints for
MPI-parallelized C++ models applied to the

NASA/JPL Ice Sheet System Model

J. Utke / E. Larour

Argonne National Laboratory
NASA Jet Propulsion Laboratory

Feb/2014 TU Darmstadt, Germany

outline

� what this is for

� principles of AD

� changes in ISSM

� changes in Adol-C

� external solvers

� adjoinable MPI

� performance

Adolc/ISSM - Utke/Larour - February/2014 1

Greenland

Adolc/ISSM - Utke/Larour - February/2014 2

the North-Eastern Ice Stream on Greenland

� velocity field

� red boundary shows
domain of interest

� dots indicate observation
data

� surface observations by
satellite/stations

� drilling holes is expensive

� goal is model tuning for
prediction of sea level rise

Adolc/ISSM - Utke/Larour - February/2014 3

sensitivity studies - maximal velocity with respect to
Y

(k
m

)

a

−1.7

−1.6

−1.5

−1.4

−1.3

−1.2

−1.1

−1

x 10
6

dV
max

/dH

1e−40

3.5e−27

1.2e−13

b

dV
max

/dS

1e−40

3.5e−27

1.2e−13

X(km)

Y
(k

m
)

c

1 2 3 4 5

x 10
5

−1.7

−1.6

−1.5

−1.4

−1.3

−1.2

−1.1

−1

x 10
6

dV
max

/dB

1e−40

3.5e−27

1.2e−13

X(km)

d

1 2 3 4 5

x 10
5

dV
max

/dα

1e−40

3.5e−27

1.2e−13

� a: H - ice thickness

� b: S - surface elevation

� c: B - bed elevation

� d: α - friction coefficient

Adolc/ISSM - Utke/Larour - February/2014 4

sensitivity studies - volume with respect to
Y

(k
m

)

a

−1.7

−1.6

−1.5

−1.4

−1.3

−1.2

−1.1

−1

x 10
6

dVol/dH

1.5e−05

0.00061

0.025

0.99

b

dVol/dS

1e−17

1e−11

1e−05

10

X(km)

Y
(k

m
)

c

1 2 3 4 5

x 10
5

−1.7

−1.6

−1.5

−1.4

−1.3

−1.2

−1.1

−1

x 10
6

dVol/dB

1e−17

1e−11

1e−05

10

X(km)

d

1 2 3 4 5

x 10
5

dVol/dα

1e−17

1e−11

1e−05

10

� a: H - ice thickness

� b: S - surface elevation

� c: B - bed elevation

� d: α - friction coefficient

Adolc/ISSM - Utke/Larour - February/2014 5

sensitivity studies (last week) - volume with respect to
Y

(k
m

)

a

−1.7

−1.6

−1.5

−1.4

−1.3

−1.2

−1.1

−1

x 10
6

dVol/dH

4.2e−05

0.0012

0.033

0.91

b

dVol/dS

1e−17

1e−11

1e−05

10

X(km)

Y
(k

m
)

c

1 2 3 4 5

x 10
5

−1.7

−1.6

−1.5

−1.4

−1.3

−1.2

−1.1

−1

x 10
6

dVol/dB

1e−17

1e−11

1e−05

10

X(km)

d

1 2 3 4 5

x 10
5

dVol/dα

1e−17

1e−11

1e−05

10

� a: H - ice thickness

� b: S - surface elevation

� c: B - bed elevation

� d: α - friction coefficient

compared to earlier studies
ran in higher resolution on
Pleiades for longer model time

Adolc/ISSM - Utke/Larour - February/2014 6

sensitivity studies - volume above floatation with respect to
Y

(k
m

)

a

−1.7

−1.6

−1.5

−1.4

−1.3

−1.2

−1.1

−1

x 10
6

dVol/dH

0

0.5

1

b

dVol/dS

0

0.02

0.04

0.06

X(km)

Y
(k

m
)

c

1 2 3 4 5

x 10
5

−1.7

−1.6

−1.5

−1.4

−1.3

−1.2

−1.1

−1

x 10
6

dVol/dB

−1

−0.5

0

X(km)

d

1 2 3 4 5

x 10
5

dVol/dα

1.9e−08

1.2e−05

0.008

5.2

� a: H - ice thickness

� b: S - surface elevation

� c: B - bed elevation

� d: α - friction coefficient

Adolc/ISSM - Utke/Larour - February/2014 7

model-to-observation misfit of S to internal state

� with respect to friction
coefficients

� L2 integrated over time

� yellow lines indicate
gradient sign switch

� part of an gradient →
line search optimization
loop

Adolc/ISSM - Utke/Larour - February/2014 8

model-to-observation misfit of S to external boundary

� with respect to
snow-mass-balance

� snow fall given as
(external) reanalysis of
climate model runs

� hints at less snow fall on
the coast, more inland

� means to adapt
reanalysis if one assumes
the ice sheet model is
“correct”

presented at AGU meeting

Adolc/ISSM - Utke/Larour - February/2014 9

why algorithmic differentiation?

given: some numerical model y = f(x) : IRn 7→ IRm

implemented as a (large / volatile) program

wanted: sensitivity analysis, optimization, parameter (state)
estimation, higher-order approximation...

1. don’t pretend we know nothing about the program
(and take finite differences of an oracle)

2. get machine precision derivatives as Jẋ or ȳTJ or ...
(avoid approximation-versus-roundoff problem)

3. the reverse (aka adjoint) mode yields “cheap” gradients

4. if the program is large, so is the adjoint program, and
so is the effort to do it manually ... easy to get wrong but hard to
debug

⇒ use tools to do it automatically!

Adolc/ISSM - Utke/Larour - February/2014 10

why algorithmic differentiation?

given: some numerical model y = f(x) : IRn 7→ IRm

implemented as a (large / volatile) program

wanted: sensitivity analysis, optimization, parameter (state)
estimation, higher-order approximation...

1. don’t pretend we know nothing about the program
(and take finite differences of an oracle)

2. get machine precision derivatives as Jẋ or ȳTJ or ...
(avoid approximation-versus-roundoff problem)

3. the reverse (aka adjoint) mode yields “cheap” gradients

4. if the program is large, so is the adjoint program, and
so is the effort to do it manually ... easy to get wrong but hard to
debug

⇒ use tools to do it automatically?

Adolc/ISSM - Utke/Larour - February/2014 10

why algorithmic differentiation?

given: some numerical model y = f(x) : IRn 7→ IRm

implemented as a (large / volatile) program

wanted: sensitivity analysis, optimization, parameter (state)
estimation, higher-order approximation...

1. don’t pretend we know nothing about the program
(and take finite differences of an oracle)

2. get machine precision derivatives as Jẋ or ȳTJ or ...
(avoid approximation-versus-roundoff problem)

3. the reverse (aka adjoint) mode yields “cheap” gradients

4. if the program is large, so is the adjoint program, and
so is the effort to do it manually ... easy to get wrong but hard to
debug

⇒ use tools to do it at least semi-automatically!

Adolc/ISSM - Utke/Larour - February/2014 10

how does AD compute derivatives?

f : y = sin(a ∗ b) ∗ c : IR3 7→ IR
yields a graph representing the order of computation:

cos(t1)

*

*

a b c

sin

t2

ab

c

t2

t1

� code list→ intermediate values t1 and t2
� each intrinsic v = φ(w, u) has local partials ∂φ

∂w ,
∂φ
∂u

� e.g. sin(t1) yields p1=cos(t1)
� in our example all others are already stored in

variables

t1 = a*b

p1 = cos(t1)

t2 = sin(t1)

y = t2*c

What do we do with this?

Adolc/ISSM - Utke/Larour - February/2014 11

how does AD compute derivatives?

f : y = sin(a ∗ b) ∗ c : IR3 7→ IR
yields a graph representing the order of computation:

cos(t1)

*

*

a b c

sin

t2

ab

c

t1

t2

� code list→ intermediate values t1 and t2

� each intrinsic v = φ(w, u) has local partials ∂φ
∂w ,

∂φ
∂u

� e.g. sin(t1) yields p1=cos(t1)
� in our example all others are already stored in

variables

t1 = a*b

p1 = cos(t1)

t2 = sin(t1)

y = t2*c

What do we do with this?

Adolc/ISSM - Utke/Larour - February/2014 11

how does AD compute derivatives?

f : y = sin(a ∗ b) ∗ c : IR3 7→ IR
yields a graph representing the order of computation:

b a

cos(t1)

c

*

*

a b c

t1

t2

t2

sin

� code list→ intermediate values t1 and t2
� each intrinsic v = φ(w, u) has local partials ∂φ

∂w ,
∂φ
∂u

� e.g. sin(t1) yields p1=cos(t1)
� in our example all others are already stored in

variables

t1 = a*b

p1 = cos(t1)

t2 = sin(t1)

y = t2*c

What do we do with this?

Adolc/ISSM - Utke/Larour - February/2014 11

how does AD compute derivatives?

f : y = sin(a ∗ b) ∗ c : IR3 7→ IR
yields a graph representing the order of computation:

b a

cos(t1)

c

*

*

a b c

t1

t2

t2

sin

� code list→ intermediate values t1 and t2
� each intrinsic v = φ(w, u) has local partials ∂φ

∂w ,
∂φ
∂u

� e.g. sin(t1) yields p1=cos(t1)
� in our example all others are already stored in

variables

t1 = a*b

p1 = cos(t1)

t2 = sin(t1)

y = t2*c

What do we do with this?

Adolc/ISSM - Utke/Larour - February/2014 11

forward mode with directional derivatives

� associate each variable v with a derivative v̇

� take a point (a0, b0, c0) and a direction (ȧ, ḃ, ċ)

� for each v = φ(w, u) propagate forward in order
v̇ = ∂φ

∂w ẇ + ∂φ
∂u u̇

b a

c

*

*

a b c

t1

t2

t2

sin

p1

d_a d_cd_b

� in practice: associate by name [a,d a]

or by address [a%v,a%d]

� interleave propagation computations

t1 = a*b

d t1 = d a*b + d b*a

p1 = cos(t1)

t2 = sin(t1)

d t2 = d t1*p1

y = t2*c

d y = d t2*c + d c*t2
What is in d y ?

Adolc/ISSM - Utke/Larour - February/2014 12

forward mode with directional derivatives

� associate each variable v with a derivative v̇

� take a point (a0, b0, c0) and a direction (ȧ, ḃ, ċ)

� for each v = φ(w, u) propagate forward in order
v̇ = ∂φ

∂w ẇ + ∂φ
∂u u̇

b a

c

*

*

a b c

t1

t2

t2

sin

p1

d_a d_cd_b

� in practice: associate by name [a,d a]

or by address [a%v,a%d]

� interleave propagation computations

t1 = a*b

d t1 = d a*b + d b*a

p1 = cos(t1)

t2 = sin(t1)

d t2 = d t1*p1

y = t2*c

d y = d t2*c + d c*t2
What is in d y ?

Adolc/ISSM - Utke/Larour - February/2014 12

forward mode with directional derivatives

� associate each variable v with a derivative v̇

� take a point (a0, b0, c0) and a direction (ȧ, ḃ, ċ)

� for each v = φ(w, u) propagate forward in order
v̇ = ∂φ

∂w ẇ + ∂φ
∂u u̇

b a

c

*

*

a b c

t1

t2

t2

sin

p1

d_a d_cd_b

� in practice: associate by name [a,d a]

or by address [a%v,a%d]

� interleave propagation computations

t1 = a*b

d t1 = d a*b + d b*a

p1 = cos(t1)

t2 = sin(t1)

d t2 = d t1*p1

y = t2*c

d y = d t2*c + d c*t2
What is in d y ?

Adolc/ISSM - Utke/Larour - February/2014 12

forward mode with directional derivatives

� associate each variable v with a derivative v̇

� take a point (a0, b0, c0) and a direction (ȧ, ḃ, ċ)

� for each v = φ(w, u) propagate forward in order
v̇ = ∂φ

∂w ẇ + ∂φ
∂u u̇

b a

c

*

*

a b c

t1

t2

t2

sin

p1

d_a d_cd_b

� in practice: associate by name [a,d a]

or by address [a%v,a%d]

� interleave propagation computations

t1 = a*b

d t1 = d a*b + d b*a

p1 = cos(t1)

t2 = sin(t1)

d t2 = d t1*p1

y = t2*c

d y = d t2*c + d c*t2

What is in d y ?

Adolc/ISSM - Utke/Larour - February/2014 12

forward mode with directional derivatives

� associate each variable v with a derivative v̇

� take a point (a0, b0, c0) and a direction (ȧ, ḃ, ċ)

� for each v = φ(w, u) propagate forward in order
v̇ = ∂φ

∂w ẇ + ∂φ
∂u u̇

b a

c

*

*

a b c

t1

t2

t2

sin

p1

d_a d_cd_b

� in practice: associate by name [a,d a]

or by address [a%v,a%d]

� interleave propagation computations

t1 = a*b

d t1 = d a*b + d b*a

p1 = cos(t1)

t2 = sin(t1)

d t2 = d t1*p1

y = t2*c

d y = d t2*c + d c*t2
What is in d y ?

Adolc/ISSM - Utke/Larour - February/2014 12

d y contains a projection

� ẏ = Jẋ computed at x0

� for example for (ȧ, ḃ, ċ) = (1, 0, 0)

b a

c

*

*

a b c

t1

t2

t2

sin

p1

d_a d_b d_c

� yields the first element of the gradient

� all gradient elements cost O(n) function
evaluations

This as a source transformation...

Adolc/ISSM - Utke/Larour - February/2014 13

d y contains a projection

� ẏ = Jẋ computed at x0

� for example for (ȧ, ḃ, ċ) = (1, 0, 0)

b a

c

*

*

a b c

t1

t2

t2

sin

p1

d_a d_b d_c

� yields the first element of the gradient

� all gradient elements cost O(n) function
evaluations

This as a source transformation...

Adolc/ISSM - Utke/Larour - February/2014 13

d y contains a projection

� ẏ = Jẋ computed at x0

� for example for (ȧ, ḃ, ċ) = (1, 0, 0)

b a

c

*

*

a b c

t1

t2

t2

sin

p1

d_a d_b d_c

� yields the first element of the gradient

� all gradient elements cost O(n) function
evaluations

This as a source transformation...

Adolc/ISSM - Utke/Larour - February/2014 13

sidebar: simple overloaded operators for a*b

in C++:

struct Afloat{float v; float d;};

Afloat operator ∗(Afloat a, Afloat b) {
Afloat r; int i;
r.v=a.v∗b.v; // value
r.d=a.d∗b.v+a.v∗b.d; // derivative
return r;
};

// other argument combinations

in Fortran:

module ATypes
public :: Areal
type Areal

sequence
real :: v,d

end type
end module ATypes

module Amult
use ATypes
interface operator(∗)

module procedure multArealAreal
! other argument combinations

end interface
contains

function multArealAreal(a,b) result(r)
type(Areal),intent(in)::a,b
type(Areal)::r
r%v=a%v∗b%v ! value
r%d=a%d∗b%v+a%v∗b%v ! derivative

end function multArealAreal
end module Amult

Operator Overloading ⇒
A simple, relatively unintrusive way to augment semantics via a
type change!

Adolc/ISSM - Utke/Larour - February/2014 14

sidebar: simple overloaded operators for a*b

in C++:

struct Afloat{float v; float d;};

Afloat operator ∗(Afloat a, Afloat b) {
Afloat r; int i;
r.v=a.v∗b.v; // value
r.d=a.d∗b.v+a.v∗b.d; // derivative
return r;
};

// other argument combinations

in Fortran:

module ATypes
public :: Areal
type Areal

sequence
real :: v,d

end type
end module ATypes

module Amult
use ATypes
interface operator(∗)

module procedure multArealAreal
! other argument combinations

end interface
contains

function multArealAreal(a,b) result(r)
type(Areal),intent(in)::a,b
type(Areal)::r
r%v=a%v∗b%v ! value
r%d=a%d∗b%v+a%v∗b%v ! derivative

end function multArealAreal
end module Amult

Operator Overloading ⇒
A simple, relatively unintrusive way to augment semantics via a
type change!

Adolc/ISSM - Utke/Larour - February/2014 14

reverse mode with adjoints

� same association model

� take a point (a0, b0, c0), compute y, pick a weight ȳ

� for each v = φ(w, u) propagate backward
w̄+ = ∂φ

∂w v̄; ū+ = ∂φ
∂u v̄; v̄ = 0

b a

c

*

*

a b c

t1

t2

t2

sin

p1

d_y backward propagation code appended:
t1 = a*b

p1 = cos(t1)

t2 = sin(t1)

y = t2*c

d c = t2*d y

d t2 = c*d y

d y = 0

d t1 = p1*d t2

d b = a*d t1

d a = b*d t1 What is in (d a,d b,d c)?

Adolc/ISSM - Utke/Larour - February/2014 15

reverse mode with adjoints

� same association model

� take a point (a0, b0, c0), compute y, pick a weight ȳ

� for each v = φ(w, u) propagate backward
w̄+ = ∂φ

∂w v̄; ū+ = ∂φ
∂u v̄; v̄ = 0

b a

c

*

*

a b c

t1

t2

t2

sin

p1

d_y backward propagation code appended:
t1 = a*b

p1 = cos(t1)

t2 = sin(t1)

y = t2*c

d c = t2*d y

d t2 = c*d y

d y = 0

d t1 = p1*d t2

d b = a*d t1

d a = b*d t1 What is in (d a,d b,d c)?

Adolc/ISSM - Utke/Larour - February/2014 15

reverse mode with adjoints

� same association model

� take a point (a0, b0, c0), compute y, pick a weight ȳ

� for each v = φ(w, u) propagate backward
w̄+ = ∂φ

∂w v̄; ū+ = ∂φ
∂u v̄; v̄ = 0

b a

c

*

*

a b c

t1

t2

t2

sin

p1

d_y backward propagation code appended:
t1 = a*b

p1 = cos(t1)

t2 = sin(t1)

y = t2*c

d c = t2*d y

d t2 = c*d y

d y = 0

d t1 = p1*d t2

d b = a*d t1

d a = b*d t1 What is in (d a,d b,d c)?

Adolc/ISSM - Utke/Larour - February/2014 15

reverse mode with adjoints

� same association model

� take a point (a0, b0, c0), compute y, pick a weight ȳ

� for each v = φ(w, u) propagate backward
w̄+ = ∂φ

∂w v̄; ū+ = ∂φ
∂u v̄; v̄ = 0

b a

c

*

*

a b c

t1

t2

t2

sin

p1

d_y backward propagation code appended:
t1 = a*b

p1 = cos(t1)

t2 = sin(t1)

y = t2*c

d c = t2*d y

d t2 = c*d y

d y = 0

d t1 = p1*d t2

d b = a*d t1

d a = b*d t1 What is in (d a,d b,d c)?

Adolc/ISSM - Utke/Larour - February/2014 15

reverse mode with adjoints

� same association model

� take a point (a0, b0, c0), compute y, pick a weight ȳ

� for each v = φ(w, u) propagate backward
w̄+ = ∂φ

∂w v̄; ū+ = ∂φ
∂u v̄; v̄ = 0

b a

c

*

*

a b c

t1

t2

t2

sin

p1

backward propagation code appended:
t1 = a*b

p1 = cos(t1)

t2 = sin(t1)

y = t2*c

d c = t2*d y

d t2 = c*d y

d y = 0

d t1 = p1*d t2

d b = a*d t1

d a = b*d t1 What is in (d a,d b,d c)?

Adolc/ISSM - Utke/Larour - February/2014 15

reverse mode with adjoints

� same association model

� take a point (a0, b0, c0), compute y, pick a weight ȳ

� for each v = φ(w, u) propagate backward
w̄+ = ∂φ

∂w v̄; ū+ = ∂φ
∂u v̄; v̄ = 0

b a

c

*

*

a b c

t1

t2

t2

sin

p1

backward propagation code appended:
t1 = a*b

p1 = cos(t1)

t2 = sin(t1)

y = t2*c

d c = t2*d y

d t2 = c*d y

d y = 0

d t1 = p1*d t2

d b = a*d t1

d a = b*d t1 What is in (d a,d b,d c)?

Adolc/ISSM - Utke/Larour - February/2014 15

reverse mode with adjoints

� same association model

� take a point (a0, b0, c0), compute y, pick a weight ȳ

� for each v = φ(w, u) propagate backward
w̄+ = ∂φ

∂w v̄; ū+ = ∂φ
∂u v̄; v̄ = 0

b a

c

*

*

a b c

t1

t2

t2

sin

p1

backward propagation code appended:
t1 = a*b

p1 = cos(t1)

t2 = sin(t1)

y = t2*c

d c = t2*d y

d t2 = c*d y

d y = 0

d t1 = p1*d t2

d b = a*d t1

d a = b*d t1

What is in (d a,d b,d c)?

Adolc/ISSM - Utke/Larour - February/2014 15

reverse mode with adjoints

� same association model

� take a point (a0, b0, c0), compute y, pick a weight ȳ

� for each v = φ(w, u) propagate backward
w̄+ = ∂φ

∂w v̄; ū+ = ∂φ
∂u v̄; v̄ = 0

b a

c

*

*

a b c

t1

t2

t2

sin

p1

backward propagation code appended:
t1 = a*b

p1 = cos(t1)

t2 = sin(t1)

y = t2*c

d c = t2*d y

d t2 = c*d y

d y = 0

d t1 = p1*d t2

d b = a*d t1

d a = b*d t1 What is in (d a,d b,d c)?

Adolc/ISSM - Utke/Larour - February/2014 15

(d a,d b,d c) contains a projection

� x̄ = ȳTJ computed at x0

� for example for ȳ = 1 we have [ā, b̄, c̄] = ∇f

b a

c

*

*

a b c

t1

t2

t2

sin

p1

� all gradient elements cost O(1) function
evaluations

� but consider when p1 is computed and when it is
used

� storage requirements grow with the length of the
computation

� typically mitigated by recomputation from
checkpoints

Reverse mode with Adol-C.

Adolc/ISSM - Utke/Larour - February/2014 16

(d a,d b,d c) contains a projection

� x̄ = ȳTJ computed at x0

� for example for ȳ = 1 we have [ā, b̄, c̄] = ∇f

b a

c

*

*

a b c

t1

t2

t2

sin

p1

� all gradient elements cost O(1) function
evaluations

� but consider when p1 is computed and when it is
used

� storage requirements grow with the length of the
computation

� typically mitigated by recomputation from
checkpoints

Reverse mode with Adol-C.

Adolc/ISSM - Utke/Larour - February/2014 16

(d a,d b,d c) contains a projection

� x̄ = ȳTJ computed at x0

� for example for ȳ = 1 we have [ā, b̄, c̄] = ∇f

b a

c

*

*

a b c

t1

t2

t2

sin

p1

� all gradient elements cost O(1) function
evaluations

� but consider when p1 is computed and when it is
used

� storage requirements grow with the length of the
computation

� typically mitigated by recomputation from
checkpoints

Reverse mode with Adol-C.

Adolc/ISSM - Utke/Larour - February/2014 16

(d a,d b,d c) contains a projection

� x̄ = ȳTJ computed at x0

� for example for ȳ = 1 we have [ā, b̄, c̄] = ∇f

b a

c

*

*

a b c

t1

t2

t2

sin

p1

st
o

ra
g

e

� all gradient elements cost O(1) function
evaluations

� but consider when p1 is computed and when it is
used

� storage requirements grow with the length of the
computation

� typically mitigated by recomputation from
checkpoints

Reverse mode with Adol-C.

Adolc/ISSM - Utke/Larour - February/2014 16

(d a,d b,d c) contains a projection

� x̄ = ȳTJ computed at x0

� for example for ȳ = 1 we have [ā, b̄, c̄] = ∇f

b a

c

*

*

a b c

t1

t2

t2

sin

p1

st
o

ra
g

e

� all gradient elements cost O(1) function
evaluations

� but consider when p1 is computed and when it is
used

� storage requirements grow with the length of the
computation

� typically mitigated by recomputation from
checkpoints

Reverse mode with Adol-C.

Adolc/ISSM - Utke/Larour - February/2014 16

Adol-C example

Adol-C: open source C++ operator-overloading library

Speelpenning example: y =
∏
i
xi evaluated at xi = i+1

i+2

#include "adolc.h"

a

double *x = new

a

double[n];

a

double t = 1;

double y;

trace on(1);

for(i=0; i<n; i++) {

x[i]

<<

= (i+1.0)/(i+2.0);

t *= x[i]; }

y = t;

trace off();

delete[] x;

use a driver :
gradient(tag,

n,

x[n],

g[n])

Adolc/ISSM - Utke/Larour - February/2014 17

Adol-C example

Adol-C: open source C++ operator-overloading library

Speelpenning example: y =
∏
i
xi evaluated at xi = i+1

i+2

#include "adolc.h"

adouble *x = new adouble[n];

adouble t = 1;

double y;

trace on(1);

for(i=0; i<n; i++) {

x[i] <<= (i+1.0)/(i+2.0);

t *= x[i]; }

t >>= y;

trace off();

delete[] x;

use a driver :
gradient(tag,

n,

x[n],

g[n])

Adolc/ISSM - Utke/Larour - February/2014 17

Adol-C example

Adol-C: open source C++ operator-overloading library

Speelpenning example: y =
∏
i
xi evaluated at xi = i+1

i+2

#include "adolc.h"

adouble *x = new adouble[n];

adouble t = 1;

double y;

trace on(1);

for(i=0; i<n; i++) {

x[i] <<= (i+1.0)/(i+2.0);

t *= x[i]; }

t >>= y;

trace off();

delete[] x;

use a driver :
gradient(tag,

n,

x[n],

g[n])

Adolc/ISSM - Utke/Larour - February/2014 17

ISSM

� C++ model

� ≈ 750 files, 100K lines, 10 developers

� uses templates, virtual methods, multiple inheritance (i.e.
isn’t just glorified C)

� only the model core is C++, data pre/post processing done
with Matlab / Python

� parallelized with MPI

� runs on *nix; NASA’s Pleiades ↔ Android

� has extensive regression testing (incl. the numerical results)

� uses libraries (meshing, partitioning, solvers)

Adolc/ISSM - Utke/Larour - February/2014 18

ISSM

� C++ model

� ≈ 750 files, 100K lines, 10 developers

� uses templates, virtual methods, multiple inheritance (i.e.
isn’t just glorified C)

� only the model core is C++, data pre/post processing done
with Matlab / Python

� parallelized with MPI

� runs on *nix; NASA’s Pleiades ↔ Android

� has extensive regression testing (incl. the numerical results)

� uses libraries (meshing, partitioning, solvers)

Adolc/ISSM - Utke/Larour - February/2014 18

ISSM

� C++ model

� ≈ 750 files, 100K lines, 10 developers

� uses templates, virtual methods, multiple inheritance (i.e.
isn’t just glorified C)

� only the model core is C++, data pre/post processing done
with Matlab / Python

� parallelized with MPI

� runs on *nix; NASA’s Pleiades ↔ Android

� has extensive regression testing (incl. the numerical results)

� uses libraries (meshing, partitioning, solvers)

Adolc/ISSM - Utke/Larour - February/2014 18

ISSM

� C++ model

� ≈ 750 files, 100K lines, 10 developers

� uses templates, virtual methods, multiple inheritance (i.e.
isn’t just glorified C)

� only the model core is C++, data pre/post processing done
with Matlab / Python

� parallelized with MPI

� runs on *nix; NASA’s Pleiades ↔ Android

� has extensive regression testing (incl. the numerical results)

� uses libraries (meshing, partitioning, solvers)

Adolc/ISSM - Utke/Larour - February/2014 18

ISSM

� C++ model

� ≈ 750 files, 100K lines, 10 developers

� uses templates, virtual methods, multiple inheritance (i.e.
isn’t just glorified C)

� only the model core is C++, data pre/post processing done
with Matlab / Python

� parallelized with MPI

� runs on *nix; NASA’s Pleiades ↔ Android

� has extensive regression testing (incl. the numerical results)

� uses libraries (meshing, partitioning, solvers)

Adolc/ISSM - Utke/Larour - February/2014 18

ISSM

� C++ model

� ≈ 750 files, 100K lines, 10 developers

� uses templates, virtual methods, multiple inheritance (i.e.
isn’t just glorified C)

� only the model core is C++, data pre/post processing done
with Matlab / Python

� parallelized with MPI

� runs on *nix; NASA’s Pleiades ↔ Android

� has extensive regression testing (incl. the numerical results)

� uses libraries (meshing, partitioning, solvers)

Adolc/ISSM - Utke/Larour - February/2014 18

ISSM

� C++ model

� ≈ 750 files, 100K lines, 10 developers

� uses templates, virtual methods, multiple inheritance (i.e.
isn’t just glorified C)

� only the model core is C++, data pre/post processing done
with Matlab / Python

� parallelized with MPI

� runs on *nix; NASA’s Pleiades ↔ Android

� has extensive regression testing (incl. the numerical results)

� uses libraries (meshing, partitioning, solvers)

Adolc/ISSM - Utke/Larour - February/2014 18

ISSM

� C++ model

� ≈ 750 files, 100K lines, 10 developers

� uses templates, virtual methods, multiple inheritance (i.e.
isn’t just glorified C)

� only the model core is C++, data pre/post processing done
with Matlab / Python

� parallelized with MPI

� runs on *nix; NASA’s Pleiades ↔ Android

� has extensive regression testing (incl. the numerical results)

� uses libraries (meshing, partitioning, solvers)

Adolc/ISSM - Utke/Larour - February/2014 18

AdolC-ify ISSM (1)

� typedef an IssmDouble and an IssmPDouble and switch on
and off via _HAVE_ADOLC_ configure define

� contributors deliver code in terms of doubles and expert
developer catogorizes those into IssmDoubles and
IssmPDoubles
=⇒ easy check

� replace all mallocs, news and frees, deletes by templated
xNew / xDelete incl. variants for 2-D arrays
=⇒ safer, cleaner, more efficient; easy check

� templatize data containers (partially done)

� some undue activation (still) forced through Matlab interface

� passing data to passive code with templated reCast

� reCast injections represent majority of the manual adaptation
work

Adolc/ISSM - Utke/Larour - February/2014 19

AdolC-ify ISSM (1)

� typedef an IssmDouble and an IssmPDouble and switch on
and off via _HAVE_ADOLC_ configure define

� contributors deliver code in terms of doubles and expert
developer catogorizes those into IssmDoubles and
IssmPDoubles
=⇒ easy check

� replace all mallocs, news and frees, deletes by templated
xNew / xDelete incl. variants for 2-D arrays
=⇒ safer, cleaner, more efficient; easy check

� templatize data containers (partially done)

� some undue activation (still) forced through Matlab interface

� passing data to passive code with templated reCast

� reCast injections represent majority of the manual adaptation
work

Adolc/ISSM - Utke/Larour - February/2014 19

AdolC-ify ISSM (1)

� typedef an IssmDouble and an IssmPDouble and switch on
and off via _HAVE_ADOLC_ configure define

� contributors deliver code in terms of doubles and expert
developer catogorizes those into IssmDoubles and
IssmPDoubles
=⇒ easy check

� replace all mallocs, news and frees, deletes by templated
xNew / xDelete incl. variants for 2-D arrays
=⇒ safer, cleaner, more efficient; easy check

� templatize data containers (partially done)

� some undue activation (still) forced through Matlab interface

� passing data to passive code with templated reCast

� reCast injections represent majority of the manual adaptation
work

Adolc/ISSM - Utke/Larour - February/2014 19

AdolC-ify ISSM (1)

� typedef an IssmDouble and an IssmPDouble and switch on
and off via _HAVE_ADOLC_ configure define

� contributors deliver code in terms of doubles and expert
developer catogorizes those into IssmDoubles and
IssmPDoubles
=⇒ easy check

� replace all mallocs, news and frees, deletes by templated
xNew / xDelete incl. variants for 2-D arrays
=⇒ safer, cleaner, more efficient; easy check

� templatize data containers (partially done)

� some undue activation (still) forced through Matlab interface

� passing data to passive code with templated reCast

� reCast injections represent majority of the manual adaptation
work

Adolc/ISSM - Utke/Larour - February/2014 19

AdolC-ify ISSM (1)

� typedef an IssmDouble and an IssmPDouble and switch on
and off via _HAVE_ADOLC_ configure define

� contributors deliver code in terms of doubles and expert
developer catogorizes those into IssmDoubles and
IssmPDoubles
=⇒ easy check

� replace all mallocs, news and frees, deletes by templated
xNew / xDelete incl. variants for 2-D arrays
=⇒ safer, cleaner, more efficient; easy check

� templatize data containers (partially done)

� some undue activation (still) forced through Matlab interface

� passing data to passive code with templated reCast

� reCast injections represent majority of the manual adaptation
work

Adolc/ISSM - Utke/Larour - February/2014 19

AdolC-ify ISSM (1)

� typedef an IssmDouble and an IssmPDouble and switch on
and off via _HAVE_ADOLC_ configure define

� contributors deliver code in terms of doubles and expert
developer catogorizes those into IssmDoubles and
IssmPDoubles
=⇒ easy check

� replace all mallocs, news and frees, deletes by templated
xNew / xDelete incl. variants for 2-D arrays
=⇒ safer, cleaner, more efficient; easy check

� templatize data containers (partially done)

� some undue activation (still) forced through Matlab interface

� passing data to passive code with templated reCast

� reCast injections represent majority of the manual adaptation
work

Adolc/ISSM - Utke/Larour - February/2014 19

AdolC-ify ISSM (2)

& change Adol-C

� pick a simple(!) setup to start with and establish consistency
with FD tests

� few time steps, coarse resolution

� sequential, dense LU solve from GSL - needs wrapping

Adolc/ISSM - Utke/Larour - February/2014 20

AdolC-ify ISSM (2)

& change Adol-C

� pick a simple(!) setup to start with and establish consistency
with FD tests

� few time steps, coarse resolution

� sequential, dense LU solve from GSL - needs wrapping

Adolc/ISSM - Utke/Larour - February/2014 20

AdolC-ify ISSM (2)

& change Adol-C

� pick a simple(!) setup to start with and establish consistency
with FD tests

� few time steps, coarse resolution

� sequential, dense LU solve from GSL - needs wrapping

Adolc/ISSM - Utke/Larour - February/2014 20

AdolC-ify ISSM (2) & change Adol-C

� pick a simple(!) setup to start with and establish consistency
with FD tests

� few time steps, coarse resolution

� sequential, dense LU solve from GSL - needs wrapping

Adolc/ISSM - Utke/Larour - February/2014 20

sidebar: external solvers/frameworks

� interfaces implement fixed mathematical meaning

� may be a “black box” (different language, proprietary)

� hopefully has derivatives easily implementable with the library
calls, e.g. BLAS,
� linear solves x = A−1b

� one can show ẋ = A−1(ḃ− Ȧx)
� b̄ = A−T x̄; Ā+ = −b̄xT

� typically requires single call encapsulation (esp. for LU-style
solvers)

� done for ISSM with GNU Scientific Library (GSL) and
MUMPS (MPI parallelized !)

� always consider augment convergence criterion for iterative
numerical methods

� efficiency considerations, e.g. for fix point iterations
xk+1 = f(xk)

Adolc/ISSM - Utke/Larour - February/2014 21

sidebar: external solvers/frameworks

� interfaces implement fixed mathematical meaning

� may be a “black box” (different language, proprietary)

� hopefully has derivatives easily implementable with the library
calls, e.g. BLAS,
� linear solves x = A−1b

� one can show ẋ = A−1(ḃ− Ȧx)
� b̄ = A−T x̄; Ā+ = −b̄xT

� typically requires single call encapsulation (esp. for LU-style
solvers)

� done for ISSM with GNU Scientific Library (GSL) and
MUMPS (MPI parallelized !)

� always consider augment convergence criterion for iterative
numerical methods

� efficiency considerations, e.g. for fix point iterations
xk+1 = f(xk)

Adolc/ISSM - Utke/Larour - February/2014 21

sidebar: external solvers/frameworks

� interfaces implement fixed mathematical meaning

� may be a “black box” (different language, proprietary)

� hopefully has derivatives easily implementable with the library
calls, e.g. BLAS,
� linear solves x = A−1b

� one can show ẋ = A−1(ḃ− Ȧx)
� b̄ = A−T x̄; Ā+ = −b̄xT

� typically requires single call encapsulation (esp. for LU-style
solvers)

� done for ISSM with GNU Scientific Library (GSL) and
MUMPS (MPI parallelized !)

� always consider augment convergence criterion for iterative
numerical methods

� efficiency considerations, e.g. for fix point iterations
xk+1 = f(xk)

Adolc/ISSM - Utke/Larour - February/2014 21

sidebar: external solvers/frameworks

� interfaces implement fixed mathematical meaning

� may be a “black box” (different language, proprietary)

� hopefully has derivatives easily implementable with the library
calls, e.g. BLAS,
� linear solves x = A−1b

� one can show ẋ = A−1(ḃ− Ȧx)
� b̄ = A−T x̄; Ā+ = −b̄xT

� typically requires single call encapsulation (esp. for LU-style
solvers)

� done for ISSM with GNU Scientific Library (GSL) and
MUMPS (MPI parallelized !)

� always consider augment convergence criterion for iterative
numerical methods

� efficiency considerations, e.g. for fix point iterations
xk+1 = f(xk)

Adolc/ISSM - Utke/Larour - February/2014 21

sidebar: external solvers/frameworks

� interfaces implement fixed mathematical meaning

� may be a “black box” (different language, proprietary)

� hopefully has derivatives easily implementable with the library
calls, e.g. BLAS,
� linear solves x = A−1b

� one can show ẋ = A−1(ḃ− Ȧx)
� b̄ = A−T x̄; Ā+ = −b̄xT

� typically requires single call encapsulation (esp. for LU-style
solvers)

� done for ISSM with GNU Scientific Library (GSL) and
MUMPS (MPI parallelized !)

� always consider augment convergence criterion for iterative
numerical methods

� efficiency considerations, e.g. for fix point iterations
xk+1 = f(xk)

Adolc/ISSM - Utke/Larour - February/2014 21

AdolC-ify ISSM (2)

& change Adol-C

� pick a simple(!) setup to start with and establish consistency
with FD tests
� few time steps, coarse resolution
� sequential, dense LU solve from GSL - needs wrapping

� Adol-C has had an ”external” interface for func(x,y) all
along but:

� the forward variants passed only ẋ, ẏ and not x, y themselves
=⇒ added

� added sanity checks for consecutive locations
� the forward/reverse handlers taped/restored x, y values

whether needed or not
=⇒ added controls

� time stepping → multiple solves with adaptive meshing →
changing system dimensions
=⇒ added tracking for maximum dimensions for single
allocation of reusable help buffers

� got first regression tests passing with matching forward &
reverse derivatives

Adolc/ISSM - Utke/Larour - February/2014 22

AdolC-ify ISSM (2)

& change Adol-C

� pick a simple(!) setup to start with and establish consistency
with FD tests
� few time steps, coarse resolution
� sequential, dense LU solve from GSL - needs wrapping
� Adol-C has had an ”external” interface for func(x,y) all

along but:

� the forward variants passed only ẋ, ẏ and not x, y themselves
=⇒ added

� added sanity checks for consecutive locations
� the forward/reverse handlers taped/restored x, y values

whether needed or not
=⇒ added controls

� time stepping → multiple solves with adaptive meshing →
changing system dimensions
=⇒ added tracking for maximum dimensions for single
allocation of reusable help buffers

� got first regression tests passing with matching forward &
reverse derivatives

Adolc/ISSM - Utke/Larour - February/2014 22

AdolC-ify ISSM (2)

& change Adol-C

� pick a simple(!) setup to start with and establish consistency
with FD tests
� few time steps, coarse resolution
� sequential, dense LU solve from GSL - needs wrapping
� Adol-C has had an ”external” interface for func(x,y) all

along but:
� the forward variants passed only ẋ, ẏ and not x, y themselves

=⇒ added

� added sanity checks for consecutive locations
� the forward/reverse handlers taped/restored x, y values

whether needed or not
=⇒ added controls

� time stepping → multiple solves with adaptive meshing →
changing system dimensions
=⇒ added tracking for maximum dimensions for single
allocation of reusable help buffers

� got first regression tests passing with matching forward &
reverse derivatives

Adolc/ISSM - Utke/Larour - February/2014 22

AdolC-ify ISSM (2) & change Adol-C
� pick a simple(!) setup to start with and establish consistency

with FD tests
� few time steps, coarse resolution
� sequential, dense LU solve from GSL - needs wrapping
� Adol-C has had an ”external” interface for func(x,y) all

along but:
� the forward variants passed only ẋ, ẏ and not x, y themselves

=⇒ added
� added sanity checks for consecutive locations

� the forward/reverse handlers taped/restored x, y values
whether needed or not
=⇒ added controls

� time stepping → multiple solves with adaptive meshing →
changing system dimensions
=⇒ added tracking for maximum dimensions for single
allocation of reusable help buffers

� got first regression tests passing with matching forward &
reverse derivatives

Adolc/ISSM - Utke/Larour - February/2014 22

AdolC-ify ISSM (2) & change Adol-C
� pick a simple(!) setup to start with and establish consistency

with FD tests
� few time steps, coarse resolution
� sequential, dense LU solve from GSL - needs wrapping
� Adol-C has had an ”external” interface for func(x,y) all

along but:
� the forward variants passed only ẋ, ẏ and not x, y themselves

=⇒ added
� added sanity checks for consecutive locations
� the forward/reverse handlers taped/restored x, y values

whether needed or not
=⇒ added controls

� time stepping → multiple solves with adaptive meshing →
changing system dimensions
=⇒ added tracking for maximum dimensions for single
allocation of reusable help buffers

� got first regression tests passing with matching forward &
reverse derivatives

Adolc/ISSM - Utke/Larour - February/2014 22

AdolC-ify ISSM (2) & change Adol-C
� pick a simple(!) setup to start with and establish consistency

with FD tests
� few time steps, coarse resolution
� sequential, dense LU solve from GSL - needs wrapping
� Adol-C has had an ”external” interface for func(x,y) all

along but:
� the forward variants passed only ẋ, ẏ and not x, y themselves

=⇒ added
� added sanity checks for consecutive locations
� the forward/reverse handlers taped/restored x, y values

whether needed or not
=⇒ added controls

� time stepping → multiple solves with adaptive meshing →
changing system dimensions
=⇒ added tracking for maximum dimensions for single
allocation of reusable help buffers

� got first regression tests passing with matching forward &
reverse derivatives

Adolc/ISSM - Utke/Larour - February/2014 22

AdolC-ify ISSM (2) & change Adol-C
� pick a simple(!) setup to start with and establish consistency

with FD tests
� few time steps, coarse resolution
� sequential, dense LU solve from GSL - needs wrapping
� Adol-C has had an ”external” interface for func(x,y) all

along but:
� the forward variants passed only ẋ, ẏ and not x, y themselves

=⇒ added
� added sanity checks for consecutive locations
� the forward/reverse handlers taped/restored x, y values

whether needed or not
=⇒ added controls

� time stepping → multiple solves with adaptive meshing →
changing system dimensions
=⇒ added tracking for maximum dimensions for single
allocation of reusable help buffers

� got first regression tests passing with matching forward &
reverse derivatives

Adolc/ISSM - Utke/Larour - February/2014 22

AdolC-ify ISSM (3)

� so far the triumph of the ”mature” tool

� but then we expanded test cases and ...
� first problem - wrong forward values computed:

� originated with partial array initializer list like
double a[3]={1.0,2.0};

� forces initialization in adouble default constructor
� can be disabled in Adol-C configuration
� also changed in Rapsodia

� second problem - wrong forward values computed:

� originated with more recent location management
� set of fixes (partially by my, partially by K. Kulshreshta - Paderborn)

� overhead?

Adolc/ISSM - Utke/Larour - February/2014 23

AdolC-ify ISSM (3)

� so far the triumph of the ”mature” tool

� but then we expanded test cases and ...
� first problem - wrong forward values computed:

� originated with partial array initializer list like
double a[3]={1.0,2.0};

� forces initialization in adouble default constructor
� can be disabled in Adol-C configuration
� also changed in Rapsodia

� second problem - wrong forward values computed:

� originated with more recent location management
� set of fixes (partially by my, partially by K. Kulshreshta - Paderborn)

� overhead?

Adolc/ISSM - Utke/Larour - February/2014 23

AdolC-ify ISSM (3)

� so far the triumph of the ”mature” tool

� but then we expanded test cases and ...
� first problem - wrong forward values computed:

� originated with partial array initializer list like
double a[3]={1.0,2.0};

� forces initialization in adouble default constructor
� can be disabled in Adol-C configuration
� also changed in Rapsodia

� second problem - wrong forward values computed:

� originated with more recent location management
� set of fixes (partially by my, partially by K. Kulshreshta - Paderborn)

� overhead?

Adolc/ISSM - Utke/Larour - February/2014 23

AdolC-ify ISSM (3)

� so far the triumph of the ”mature” tool

� but then we expanded test cases and ...
� first problem - wrong forward values computed:

� originated with partial array initializer list like
double a[3]={1.0,2.0};

� forces initialization in adouble default constructor

� can be disabled in Adol-C configuration
� also changed in Rapsodia

� second problem - wrong forward values computed:

� originated with more recent location management
� set of fixes (partially by my, partially by K. Kulshreshta - Paderborn)

� overhead?

Adolc/ISSM - Utke/Larour - February/2014 23

AdolC-ify ISSM (3)

� so far the triumph of the ”mature” tool

� but then we expanded test cases and ...
� first problem - wrong forward values computed:

� originated with partial array initializer list like
double a[3]={1.0,2.0};

� forces initialization in adouble default constructor
� can be disabled in Adol-C configuration

� also changed in Rapsodia

� second problem - wrong forward values computed:

� originated with more recent location management
� set of fixes (partially by my, partially by K. Kulshreshta - Paderborn)

� overhead?

Adolc/ISSM - Utke/Larour - February/2014 23

AdolC-ify ISSM (3)

� so far the triumph of the ”mature” tool

� but then we expanded test cases and ...
� first problem - wrong forward values computed:

� originated with partial array initializer list like
double a[3]={1.0,2.0};

� forces initialization in adouble default constructor
� can be disabled in Adol-C configuration
� also changed in Rapsodia

� second problem - wrong forward values computed:

� originated with more recent location management
� set of fixes (partially by my, partially by K. Kulshreshta - Paderborn)

� overhead?

Adolc/ISSM - Utke/Larour - February/2014 23

AdolC-ify ISSM (3)

� so far the triumph of the ”mature” tool

� but then we expanded test cases and ...
� first problem - wrong forward values computed:

� originated with partial array initializer list like
double a[3]={1.0,2.0};

� forces initialization in adouble default constructor
� can be disabled in Adol-C configuration
� also changed in Rapsodia

� second problem - wrong forward values computed:

� originated with more recent location management
� set of fixes (partially by my, partially by K. Kulshreshta - Paderborn)

� overhead?

Adolc/ISSM - Utke/Larour - February/2014 23

AdolC-ify ISSM (3)

� so far the triumph of the ”mature” tool

� but then we expanded test cases and ...
� first problem - wrong forward values computed:

� originated with partial array initializer list like
double a[3]={1.0,2.0};

� forces initialization in adouble default constructor
� can be disabled in Adol-C configuration
� also changed in Rapsodia

� second problem - wrong forward values computed:
� originated with more recent location management

� set of fixes (partially by my, partially by K. Kulshreshta - Paderborn)

� overhead?

Adolc/ISSM - Utke/Larour - February/2014 23

AdolC-ify ISSM (3)

� so far the triumph of the ”mature” tool

� but then we expanded test cases and ...
� first problem - wrong forward values computed:

� originated with partial array initializer list like
double a[3]={1.0,2.0};

� forces initialization in adouble default constructor
� can be disabled in Adol-C configuration
� also changed in Rapsodia

� second problem - wrong forward values computed:
� originated with more recent location management
� set of fixes (partially by my, partially by K. Kulshreshta - Paderborn)

� overhead?

Adolc/ISSM - Utke/Larour - February/2014 23

AdolC-ify ISSM (3)

� so far the triumph of the ”mature” tool

� but then we expanded test cases and ...
� first problem - wrong forward values computed:

� originated with partial array initializer list like
double a[3]={1.0,2.0};

� forces initialization in adouble default constructor
� can be disabled in Adol-C configuration
� also changed in Rapsodia

� second problem - wrong forward values computed:
� originated with more recent location management
� set of fixes (partially by my, partially by K. Kulshreshta - Paderborn)

� overhead?

Adolc/ISSM - Utke/Larour - February/2014 23

AdolC-ified ISSM performance - overloading (1)
pick some test case (here ”test109”), g++ -O2, initially horrible
timings fixed by another changeset to locations mgmt. from K. Kulshreshta

Adolc/ISSM - Utke/Larour - February/2014 24

AdolC-ified ISSM performance - overloading (1)
pick some test case (here ”test109”), g++ -O2, initially horrible
timings fixed by another changeset to locations mgmt. from K. Kulshreshta

Adolc/ISSM - Utke/Larour - February/2014 24

AdolC-ified ISSM performance - overloading (2)
less of a surprise once we look at the portions of runtime

Adolc/ISSM - Utke/Larour - February/2014 25

AdolC-ified ISSM performance - overloading (2)
less of a surprise once we look at the portions of runtime

Adolc/ISSM - Utke/Larour - February/2014 25

AdolC-ified ISSM performance - tracing & reverse (1)

using ”test3019” - an AD-enabled regression test

Adolc/ISSM - Utke/Larour - February/2014 26

AdolC-ified ISSM performance - tracing & reverse (1)

using ”test3019” - an AD-enabled regression test

Adolc/ISSM - Utke/Larour - February/2014 26

AdolC-ified ISSM performance - tracing & reverse (2)

using ”test3019” - an AD-enabled regression test

heavily skewed in Adol-C’s advantage because of GSL

Adolc/ISSM - Utke/Larour - February/2014 27

AdolC-ified ISSM performance - tracing & reverse (2)

using ”test3019” - an AD-enabled regression test

heavily skewed in Adol-C’s advantage because of GSL

Adolc/ISSM - Utke/Larour - February/2014 27

AdolC-ified ISSM performance - tracing & reverse (2)

using ”test3019” - an AD-enabled regression test

heavily skewed in Adol-C’s advantage because of GSL

Adolc/ISSM - Utke/Larour - February/2014 27

sidebar: Parallel with MPI (I)

� a simple MPI (pseudo) program with 6 calls :

mpi init // initialize the environment

mpi comm size // number of processes in the communicator

mpi comm rank // rank of this process in the communicator

mpi send // send (blocking)

mpi recv // receive (blocking)

mpi finalize // cleanup

� example reverse mode for blocking communication between 2
ranks and interpret as assignments

c=a;

b=d;

P1 P2

RECV(c)

SEND(d)RECV(b)

SEND(a)

fo
rw

ar
d

ad
jo

in
t

SEND(b)

P1

RECV(t)

a=a+t

b=0

SEND(c)
c=0

RECV(t)
d=d+t

P2

a=a+c; c=0;

d=d+b; b=0;

� use the communication graph as model

Adolc/ISSM - Utke/Larour - February/2014 28

departing from simple setup

� different solver - MUMPS

� sparse system

� parallel setup

� had been working on Adjoinable MPI lib
(w L. Hascoët & M. Schanen)

� most of the communication is collective which makes the
adjoint ”easier”; still needs the AMPI variant called

� don’t like more preprocessor switches for using MPI or AMPI
etc. littering the code

� introduce ISSM_MPI layer to encapsulate 4 versions
MPI . X . X
AD . . X X

� MPI emulator uses memcpy or adouble assignments resp.

� layer encapsulates all MPI switching =⇒ cleaner code

Adolc/ISSM - Utke/Larour - February/2014 29

departing from simple setup

� different solver - MUMPS

� sparse system

� parallel setup

� had been working on Adjoinable MPI lib
(w L. Hascoët & M. Schanen)

� most of the communication is collective which makes the
adjoint ”easier”; still needs the AMPI variant called

� don’t like more preprocessor switches for using MPI or AMPI
etc. littering the code

� introduce ISSM_MPI layer to encapsulate 4 versions
MPI . X . X
AD . . X X

� MPI emulator uses memcpy or adouble assignments resp.

� layer encapsulates all MPI switching =⇒ cleaner code

Adolc/ISSM - Utke/Larour - February/2014 29

departing from simple setup

� different solver - MUMPS

� sparse system

� parallel setup

� had been working on Adjoinable MPI lib
(w L. Hascoët & M. Schanen)

� most of the communication is collective which makes the
adjoint ”easier”; still needs the AMPI variant called

� don’t like more preprocessor switches for using MPI or AMPI
etc. littering the code

� introduce ISSM_MPI layer to encapsulate 4 versions
MPI . X . X
AD . . X X

� MPI emulator uses memcpy or adouble assignments resp.

� layer encapsulates all MPI switching =⇒ cleaner code

Adolc/ISSM - Utke/Larour - February/2014 29

departing from simple setup

� different solver - MUMPS

� sparse system

� parallel setup

� had been working on Adjoinable MPI lib
(w L. Hascoët & M. Schanen)

� most of the communication is collective which makes the
adjoint ”easier”; still needs the AMPI variant called

� don’t like more preprocessor switches for using MPI or AMPI
etc. littering the code

� introduce ISSM_MPI layer to encapsulate 4 versions
MPI . X . X
AD . . X X

� MPI emulator uses memcpy or adouble assignments resp.

� layer encapsulates all MPI switching =⇒ cleaner code

Adolc/ISSM - Utke/Larour - February/2014 29

departing from simple setup

� different solver - MUMPS

� sparse system

� parallel setup

� had been working on Adjoinable MPI lib
(w L. Hascoët & M. Schanen)

� most of the communication is collective which makes the
adjoint ”easier”; still needs the AMPI variant called

� don’t like more preprocessor switches for using MPI or AMPI
etc. littering the code

� introduce ISSM_MPI layer to encapsulate 4 versions
MPI . X . X
AD . . X X

� MPI emulator uses memcpy or adouble assignments resp.

� layer encapsulates all MPI switching =⇒ cleaner code

Adolc/ISSM - Utke/Larour - February/2014 29

departing from simple setup

� different solver - MUMPS

� sparse system

� parallel setup

� had been working on Adjoinable MPI lib
(w L. Hascoët & M. Schanen)

� most of the communication is collective which makes the
adjoint ”easier”; still needs the AMPI variant called

� don’t like more preprocessor switches for using MPI or AMPI
etc. littering the code

� introduce ISSM_MPI layer to encapsulate 4 versions
MPI . X . X
AD . . X X

� MPI emulator uses memcpy or adouble assignments resp.

� layer encapsulates all MPI switching =⇒ cleaner code

Adolc/ISSM - Utke/Larour - February/2014 29

departing from simple setup

� different solver - MUMPS

� sparse system

� parallel setup

� had been working on Adjoinable MPI lib
(w L. Hascoët & M. Schanen)

� most of the communication is collective which makes the
adjoint ”easier”; still needs the AMPI variant called

� don’t like more preprocessor switches for using MPI or AMPI
etc. littering the code

� introduce ISSM_MPI layer to encapsulate 4 versions
MPI . X . X
AD . . X X

� MPI emulator uses memcpy or adouble assignments resp.

� layer encapsulates all MPI switching =⇒ cleaner code

Adolc/ISSM - Utke/Larour - February/2014 29

departing from simple setup

� different solver - MUMPS

� sparse system

� parallel setup

� had been working on Adjoinable MPI lib
(w L. Hascoët & M. Schanen)

� most of the communication is collective which makes the
adjoint ”easier”; still needs the AMPI variant called

� don’t like more preprocessor switches for using MPI or AMPI
etc. littering the code

� introduce ISSM_MPI layer to encapsulate 4 versions
MPI . X . X
AD . . X X

� MPI emulator uses memcpy or adouble assignments resp.

� layer encapsulates all MPI switching =⇒ cleaner code

Adolc/ISSM - Utke/Larour - February/2014 29

departing from simple setup

� different solver - MUMPS

� sparse system

� parallel setup

� had been working on Adjoinable MPI lib
(w L. Hascoët & M. Schanen)

� most of the communication is collective which makes the
adjoint ”easier”; still needs the AMPI variant called

� don’t like more preprocessor switches for using MPI or AMPI
etc. littering the code

� introduce ISSM_MPI layer to encapsulate 4 versions
MPI . X . X
AD . . X X

� MPI emulator uses memcpy or adouble assignments resp.

� layer encapsulates all MPI switching =⇒ cleaner code

Adolc/ISSM - Utke/Larour - February/2014 29

Adjoinable MPI in Adol-C and ISSM (1)
� Adol-C has:

� (i) ”tape”-based forward drivers
� (ii) typed, 4-way stack (tape+Taylors)

makes it ”pretty outstanding in terms of uniqueness”

� Andreas Griewank’s favorite quote of a Chicago tour guide

� (i) means using the same AMPI internal interface as Tapenade
� (ii) reluctant to add a 5th stack for MPI parameters with

opaque types (such as communicator, datatype etc.) =⇒ use
Adj.-MPI provided default stack
� problem with the above is loss of self-containedness of the

trace.
� general problems with (re)storing blobs are related to

(de)serialization of C++ objects
� covers all interfaces needed by ISSM (reductions,

gather/scatter (v) combinations)
� deals with MPI_INPLACE and 0-count buffers
� requires contiguous locations =⇒ enforced in xNew spec.

Adolc/ISSM - Utke/Larour - February/2014 30

Adjoinable MPI in Adol-C and ISSM (1)
� Adol-C has:

� (i) ”tape”-based forward drivers
� (ii) typed, 4-way stack (tape+Taylors)

makes it ”pretty outstanding in terms of uniqueness”

� Andreas Griewank’s favorite quote of a Chicago tour guide

� (i) means using the same AMPI internal interface as Tapenade
� (ii) reluctant to add a 5th stack for MPI parameters with

opaque types (such as communicator, datatype etc.) =⇒ use
Adj.-MPI provided default stack
� problem with the above is loss of self-containedness of the

trace.
� general problems with (re)storing blobs are related to

(de)serialization of C++ objects
� covers all interfaces needed by ISSM (reductions,

gather/scatter (v) combinations)
� deals with MPI_INPLACE and 0-count buffers
� requires contiguous locations =⇒ enforced in xNew spec.

Adolc/ISSM - Utke/Larour - February/2014 30

Adjoinable MPI in Adol-C and ISSM (1)
� Adol-C has:

� (i) ”tape”-based forward drivers
� (ii) typed, 4-way stack (tape+Taylors)

makes it ”pretty outstanding in terms of uniqueness”

� Andreas Griewank’s favorite quote of a Chicago tour guide

� (i) means using the same AMPI internal interface as Tapenade

� (ii) reluctant to add a 5th stack for MPI parameters with
opaque types (such as communicator, datatype etc.) =⇒ use
Adj.-MPI provided default stack
� problem with the above is loss of self-containedness of the

trace.
� general problems with (re)storing blobs are related to

(de)serialization of C++ objects
� covers all interfaces needed by ISSM (reductions,

gather/scatter (v) combinations)
� deals with MPI_INPLACE and 0-count buffers
� requires contiguous locations =⇒ enforced in xNew spec.

Adolc/ISSM - Utke/Larour - February/2014 30

Adjoinable MPI in Adol-C and ISSM (1)
� Adol-C has:

� (i) ”tape”-based forward drivers
� (ii) typed, 4-way stack (tape+Taylors)

makes it ”pretty outstanding in terms of uniqueness”

� Andreas Griewank’s favorite quote of a Chicago tour guide

� (i) means using the same AMPI internal interface as Tapenade
� (ii) reluctant to add a 5th stack for MPI parameters with

opaque types (such as communicator, datatype etc.) =⇒ use
Adj.-MPI provided default stack

� problem with the above is loss of self-containedness of the
trace.
� general problems with (re)storing blobs are related to

(de)serialization of C++ objects
� covers all interfaces needed by ISSM (reductions,

gather/scatter (v) combinations)
� deals with MPI_INPLACE and 0-count buffers
� requires contiguous locations =⇒ enforced in xNew spec.

Adolc/ISSM - Utke/Larour - February/2014 30

Adjoinable MPI in Adol-C and ISSM (1)
� Adol-C has:

� (i) ”tape”-based forward drivers
� (ii) typed, 4-way stack (tape+Taylors)

makes it ”pretty outstanding in terms of uniqueness”

� Andreas Griewank’s favorite quote of a Chicago tour guide

� (i) means using the same AMPI internal interface as Tapenade
� (ii) reluctant to add a 5th stack for MPI parameters with

opaque types (such as communicator, datatype etc.) =⇒ use
Adj.-MPI provided default stack
� problem with the above is loss of self-containedness of the

trace.

� general problems with (re)storing blobs are related to
(de)serialization of C++ objects
� covers all interfaces needed by ISSM (reductions,

gather/scatter (v) combinations)
� deals with MPI_INPLACE and 0-count buffers
� requires contiguous locations =⇒ enforced in xNew spec.

Adolc/ISSM - Utke/Larour - February/2014 30

Adjoinable MPI in Adol-C and ISSM (1)
� Adol-C has:

� (i) ”tape”-based forward drivers
� (ii) typed, 4-way stack (tape+Taylors)

makes it ”pretty outstanding in terms of uniqueness”

� Andreas Griewank’s favorite quote of a Chicago tour guide

� (i) means using the same AMPI internal interface as Tapenade
� (ii) reluctant to add a 5th stack for MPI parameters with

opaque types (such as communicator, datatype etc.) =⇒ use
Adj.-MPI provided default stack
� problem with the above is loss of self-containedness of the

trace.
� general problems with (re)storing blobs are related to

(de)serialization of C++ objects

� covers all interfaces needed by ISSM (reductions,
gather/scatter (v) combinations)
� deals with MPI_INPLACE and 0-count buffers
� requires contiguous locations =⇒ enforced in xNew spec.

Adolc/ISSM - Utke/Larour - February/2014 30

Adjoinable MPI in Adol-C and ISSM (1)
� Adol-C has:

� (i) ”tape”-based forward drivers
� (ii) typed, 4-way stack (tape+Taylors)

makes it ”pretty outstanding in terms of uniqueness”

� Andreas Griewank’s favorite quote of a Chicago tour guide

� (i) means using the same AMPI internal interface as Tapenade
� (ii) reluctant to add a 5th stack for MPI parameters with

opaque types (such as communicator, datatype etc.) =⇒ use
Adj.-MPI provided default stack
� problem with the above is loss of self-containedness of the

trace.
� general problems with (re)storing blobs are related to

(de)serialization of C++ objects
� covers all interfaces needed by ISSM (reductions,

gather/scatter (v) combinations)

� deals with MPI_INPLACE and 0-count buffers
� requires contiguous locations =⇒ enforced in xNew spec.

Adolc/ISSM - Utke/Larour - February/2014 30

Adjoinable MPI in Adol-C and ISSM (1)
� Adol-C has:

� (i) ”tape”-based forward drivers
� (ii) typed, 4-way stack (tape+Taylors)

makes it ”pretty outstanding in terms of uniqueness”

� Andreas Griewank’s favorite quote of a Chicago tour guide

� (i) means using the same AMPI internal interface as Tapenade
� (ii) reluctant to add a 5th stack for MPI parameters with

opaque types (such as communicator, datatype etc.) =⇒ use
Adj.-MPI provided default stack
� problem with the above is loss of self-containedness of the

trace.
� general problems with (re)storing blobs are related to

(de)serialization of C++ objects
� covers all interfaces needed by ISSM (reductions,

gather/scatter (v) combinations)
� deals with MPI_INPLACE and 0-count buffers

� requires contiguous locations =⇒ enforced in xNew spec.

Adolc/ISSM - Utke/Larour - February/2014 30

Adjoinable MPI in Adol-C and ISSM (1)
� Adol-C has:

� (i) ”tape”-based forward drivers
� (ii) typed, 4-way stack (tape+Taylors)

makes it ”pretty outstanding in terms of uniqueness”

� Andreas Griewank’s favorite quote of a Chicago tour guide

� (i) means using the same AMPI internal interface as Tapenade
� (ii) reluctant to add a 5th stack for MPI parameters with

opaque types (such as communicator, datatype etc.) =⇒ use
Adj.-MPI provided default stack
� problem with the above is loss of self-containedness of the

trace.
� general problems with (re)storing blobs are related to

(de)serialization of C++ objects
� covers all interfaces needed by ISSM (reductions,

gather/scatter (v) combinations)
� deals with MPI_INPLACE and 0-count buffers
� requires contiguous locations =⇒ enforced in xNew spec.

Adolc/ISSM - Utke/Larour - February/2014 30

Adjoinable MPI in Adol-C and ISSM (2)

introduction of ”active” AMPI_ADOUBLE type to AMPI has been
thoroughly discussed between the involved parties

� have coexisting active and passive communications

� buffers passed by void*

� forces some external distinction of activity

� most natural by corresponding MPI types, particularly when
one thinks of derived MPI types

� the ISSM wrapper introduces ISSM_MPI_DOUBLE and
ISSM_MPI_PDOUBLE

� correspondence required the same way as in standard MPI

� practical problems with collectives distributed in the code
proved it is easy to get wrong

Adolc/ISSM - Utke/Larour - February/2014 31

Adjoinable MPI in Adol-C and ISSM (2)

introduction of ”active” AMPI_ADOUBLE type to AMPI has been
thoroughly discussed between the involved parties

� have coexisting active and passive communications

� buffers passed by void*

� forces some external distinction of activity

� most natural by corresponding MPI types, particularly when
one thinks of derived MPI types

� the ISSM wrapper introduces ISSM_MPI_DOUBLE and
ISSM_MPI_PDOUBLE

� correspondence required the same way as in standard MPI

� practical problems with collectives distributed in the code
proved it is easy to get wrong

Adolc/ISSM - Utke/Larour - February/2014 31

Adjoinable MPI in Adol-C and ISSM (2)

introduction of ”active” AMPI_ADOUBLE type to AMPI has been
thoroughly discussed between the involved parties

� have coexisting active and passive communications

� buffers passed by void*

� forces some external distinction of activity

� most natural by corresponding MPI types, particularly when
one thinks of derived MPI types

� the ISSM wrapper introduces ISSM_MPI_DOUBLE and
ISSM_MPI_PDOUBLE

� correspondence required the same way as in standard MPI

� practical problems with collectives distributed in the code
proved it is easy to get wrong

Adolc/ISSM - Utke/Larour - February/2014 31

Adjoinable MPI in Adol-C and ISSM (2)

introduction of ”active” AMPI_ADOUBLE type to AMPI has been
thoroughly discussed between the involved parties

� have coexisting active and passive communications

� buffers passed by void*

� forces some external distinction of activity

� most natural by corresponding MPI types, particularly when
one thinks of derived MPI types

� the ISSM wrapper introduces ISSM_MPI_DOUBLE and
ISSM_MPI_PDOUBLE

� correspondence required the same way as in standard MPI

� practical problems with collectives distributed in the code
proved it is easy to get wrong

Adolc/ISSM - Utke/Larour - February/2014 31

Adjoinable MPI in Adol-C and ISSM (2)

introduction of ”active” AMPI_ADOUBLE type to AMPI has been
thoroughly discussed between the involved parties

� have coexisting active and passive communications

� buffers passed by void*

� forces some external distinction of activity

� most natural by corresponding MPI types, particularly when
one thinks of derived MPI types

� the ISSM wrapper introduces ISSM_MPI_DOUBLE and
ISSM_MPI_PDOUBLE

� correspondence required the same way as in standard MPI

� practical problems with collectives distributed in the code
proved it is easy to get wrong

Adolc/ISSM - Utke/Larour - February/2014 31

Adjoinable MPI in Adol-C and ISSM (2)

introduction of ”active” AMPI_ADOUBLE type to AMPI has been
thoroughly discussed between the involved parties

� have coexisting active and passive communications

� buffers passed by void*

� forces some external distinction of activity

� most natural by corresponding MPI types, particularly when
one thinks of derived MPI types

� the ISSM wrapper introduces ISSM_MPI_DOUBLE and
ISSM_MPI_PDOUBLE

� correspondence required the same way as in standard MPI

� practical problems with collectives distributed in the code
proved it is easy to get wrong

Adolc/ISSM - Utke/Larour - February/2014 31

Adjoinable MPI in Adol-C and ISSM (2)

introduction of ”active” AMPI_ADOUBLE type to AMPI has been
thoroughly discussed between the involved parties

� have coexisting active and passive communications

� buffers passed by void*

� forces some external distinction of activity

� most natural by corresponding MPI types, particularly when
one thinks of derived MPI types

� the ISSM wrapper introduces ISSM_MPI_DOUBLE and
ISSM_MPI_PDOUBLE

� correspondence required the same way as in standard MPI

� practical problems with collectives distributed in the code
proved it is easy to get wrong

Adolc/ISSM - Utke/Larour - February/2014 31

Adjoinable MPI in Adol-C and ISSM (2)

introduction of ”active” AMPI_ADOUBLE type to AMPI has been
thoroughly discussed between the involved parties

� have coexisting active and passive communications

� buffers passed by void*

� forces some external distinction of activity

� most natural by corresponding MPI types, particularly when
one thinks of derived MPI types

� the ISSM wrapper introduces ISSM_MPI_DOUBLE and
ISSM_MPI_PDOUBLE

� correspondence required the same way as in standard MPI

� practical problems with collectives distributed in the code
proved it is easy to get wrong

Adolc/ISSM - Utke/Larour - February/2014 31

Adjoinable MPI in Adol-C and ISSM (2)

template the MPI logic with 2 parameters like this pattern

1 #include <iostream>
2 typedef int DataType;
3 class TypeInfo {
4 public:
5 static DataType ourDoubleType;
6 static DataType ourIntType;
7 };
8 DataType TypeInfo::ourDoubleType;
9 DataType TypeInfo::ourIntType;

10
11 template <class T, DataType ∗typeOfT p> class C {
12 public:
13 C(){};
14 ˜C(){};
15 void foo(T aT) { std::cout << aT << ” of type ” << ∗typeOfT p << std::endl; }
16 };
17
18 int main (void) {
19 TypeInfo::ourDoubleType=1;
20 TypeInfo::ourIntType=2;
21 C<double,&TypeInfo::ourDoubleType>().foo(2.0);
22 C<int,&TypeInfo::ourIntType>().foo(−1);
23 return 0;
24 }

not completed (yet) in ISSM

Adolc/ISSM - Utke/Larour - February/2014 32

wrapping MUMPS

� needs to convey sparsity info to wrapped solver

� added integer array parameter to a second set of external func
interfaces

� suggests void* blobs again but has to address the same
concerns as MPI opaque parameters
� question whether to factorize again in the reverse sweep or

recover factors:

� generally - tradeoff fill-in for refactoring
� specifically - MUMPS can dump factors but is written in /

geared toward Fortran
� performance analysis shows it is fast anyway (unlike GSL)

� revisit performance (by now > 500 svn changesets later)

Adolc/ISSM - Utke/Larour - February/2014 33

wrapping MUMPS

� needs to convey sparsity info to wrapped solver

� added integer array parameter to a second set of external func
interfaces

� suggests void* blobs again but has to address the same
concerns as MPI opaque parameters
� question whether to factorize again in the reverse sweep or

recover factors:

� generally - tradeoff fill-in for refactoring
� specifically - MUMPS can dump factors but is written in /

geared toward Fortran
� performance analysis shows it is fast anyway (unlike GSL)

� revisit performance (by now > 500 svn changesets later)

Adolc/ISSM - Utke/Larour - February/2014 33

wrapping MUMPS

� needs to convey sparsity info to wrapped solver

� added integer array parameter to a second set of external func
interfaces

� suggests void* blobs again but has to address the same
concerns as MPI opaque parameters

� question whether to factorize again in the reverse sweep or
recover factors:

� generally - tradeoff fill-in for refactoring
� specifically - MUMPS can dump factors but is written in /

geared toward Fortran
� performance analysis shows it is fast anyway (unlike GSL)

� revisit performance (by now > 500 svn changesets later)

Adolc/ISSM - Utke/Larour - February/2014 33

wrapping MUMPS

� needs to convey sparsity info to wrapped solver

� added integer array parameter to a second set of external func
interfaces

� suggests void* blobs again but has to address the same
concerns as MPI opaque parameters
� question whether to factorize again in the reverse sweep or

recover factors:
� generally - tradeoff fill-in for refactoring

� specifically - MUMPS can dump factors but is written in /
geared toward Fortran

� performance analysis shows it is fast anyway (unlike GSL)

� revisit performance (by now > 500 svn changesets later)

Adolc/ISSM - Utke/Larour - February/2014 33

wrapping MUMPS

� needs to convey sparsity info to wrapped solver

� added integer array parameter to a second set of external func
interfaces

� suggests void* blobs again but has to address the same
concerns as MPI opaque parameters
� question whether to factorize again in the reverse sweep or

recover factors:
� generally - tradeoff fill-in for refactoring
� specifically - MUMPS can dump factors but is written in /

geared toward Fortran

� performance analysis shows it is fast anyway (unlike GSL)

� revisit performance (by now > 500 svn changesets later)

Adolc/ISSM - Utke/Larour - February/2014 33

wrapping MUMPS

� needs to convey sparsity info to wrapped solver

� added integer array parameter to a second set of external func
interfaces

� suggests void* blobs again but has to address the same
concerns as MPI opaque parameters
� question whether to factorize again in the reverse sweep or

recover factors:
� generally - tradeoff fill-in for refactoring
� specifically - MUMPS can dump factors but is written in /

geared toward Fortran
� performance analysis shows it is fast anyway (unlike GSL)

� revisit performance (by now > 500 svn changesets later)

Adolc/ISSM - Utke/Larour - February/2014 33

wrapping MUMPS

� needs to convey sparsity info to wrapped solver

� added integer array parameter to a second set of external func
interfaces

� suggests void* blobs again but has to address the same
concerns as MPI opaque parameters
� question whether to factorize again in the reverse sweep or

recover factors:
� generally - tradeoff fill-in for refactoring
� specifically - MUMPS can dump factors but is written in /

geared toward Fortran
� performance analysis shows it is fast anyway (unlike GSL)

� revisit performance (by now > 500 svn changesets later)

Adolc/ISSM - Utke/Larour - February/2014 33

AdolC-ified ISSM performance - tracing & reverse (1)

test3019 - with contiguous locations, 3-way parallel MUMPS

Adolc/ISSM - Utke/Larour - February/2014 34

AdolC-ified ISSM performance - tracing & reverse (2)

test3019 - with contiguous locations, 3-way parallel MUMPS

MUMPS is fast - more realistic picture

Adolc/ISSM - Utke/Larour - February/2014 35

AdolC-ified ISSM performance - tracing & reverse (2)

test3019 - with contiguous locations, 3-way parallel MUMPS

MUMPS is fast - more realistic picture

Adolc/ISSM - Utke/Larour - February/2014 35

AdolC-ified ISSM performance - tracing & reverse (3)

test3019 - with contiguous locations, 3-way parallel MUMPS

i.e. pretty nasty ... BUT

Adolc/ISSM - Utke/Larour - February/2014 36

AdolC-ified ISSM performance - tracing & reverse (3)

test3019 - with contiguous locations, 3-way parallel MUMPS

i.e. pretty nasty ... BUT

Adolc/ISSM - Utke/Larour - February/2014 36

AdolC-ified ISSM performance - tracing & reverse (3)

new 3-way parallel MUMPS

 0

 0.2

 0.4

 0.6

 0.8

 1

100 50 25 12.5

libadolc
libmumps

I/O

 0.5

 1

 1.5

 2

100 50 25 12.5

trace overhead

� realistic runtime
overhead factors
between 10 and 30

� reflects theoretical
result for reverse
interpretation

� practically viable on
Pleiades

Adolc/ISSM - Utke/Larour - February/2014 37

AdolC-ified ISSM performance - tracing & reverse (3)

new 3-way parallel MUMPS

 0

 0.2

 0.4

 0.6

 0.8

 1

100 50 25 12.5

libadolc
libmumps

I/O

 0.5

 1

 1.5

 2

100 50 25 12.5

trace overhead

� realistic runtime
overhead factors
between 10 and 30

� reflects theoretical
result for reverse
interpretation

� practically viable on
Pleiades

Adolc/ISSM - Utke/Larour - February/2014 37

AdolC-ified ISSM performance - tracing & reverse (3)

new 3-way parallel MUMPS

 0

 0.2

 0.4

 0.6

 0.8

 1

100 50 25 12.5

libadolc
libmumps

I/O

 0.5

 1

 1.5

 2

100 50 25 12.5

trace overhead

� realistic runtime
overhead factors
between 10 and 30

� reflects theoretical
result for reverse
interpretation

� practically viable on
Pleiades

Adolc/ISSM - Utke/Larour - February/2014 37

AdolC-ified ISSM performance - tracing & reverse (3)

new 3-way parallel MUMPS

 0

 0.2

 0.4

 0.6

 0.8

 1

100 50 25 12.5

libadolc
libmumps

I/O

 0.5

 1

 1.5

 2

100 50 25 12.5

trace overhead

� realistic runtime
overhead factors
between 10 and 30

� reflects theoretical
result for reverse
interpretation

� practically viable on
Pleiades

Adolc/ISSM - Utke/Larour - February/2014 37

AdolC-ified ISSM performance - outlook

since these tests happened

� 60 - way runs on Pleiades

� transient runs tax the file system and sometimes that causes
crashes

� acc. to Eric Larour: ”You have to talk to it with love, and
then you get numbers”

� resilience/adjoint integrated checkpointing isn’t there yet, but
is in the works

IOW ... to be continued ...

Adolc/ISSM - Utke/Larour - February/2014 38

AdolC-ified ISSM performance - outlook

since these tests happened

� 60 - way runs on Pleiades

� transient runs tax the file system and sometimes that causes
crashes

� acc. to Eric Larour: ”You have to talk to it with love, and
then you get numbers”

� resilience/adjoint integrated checkpointing isn’t there yet, but
is in the works

IOW ... to be continued ...

Adolc/ISSM - Utke/Larour - February/2014 38

AdolC-ified ISSM performance - outlook

since these tests happened

� 60 - way runs on Pleiades

� transient runs tax the file system and sometimes that causes
crashes

� acc. to Eric Larour: ”You have to talk to it with love, and
then you get numbers”

� resilience/adjoint integrated checkpointing isn’t there yet, but
is in the works

IOW ... to be continued ...

Adolc/ISSM - Utke/Larour - February/2014 38

AdolC-ified ISSM performance - outlook

since these tests happened

� 60 - way runs on Pleiades

� transient runs tax the file system and sometimes that causes
crashes

� acc. to Eric Larour: ”You have to talk to it with love, and
then you get numbers”

� resilience/adjoint integrated checkpointing isn’t there yet, but
is in the works

IOW ... to be continued ...

Adolc/ISSM - Utke/Larour - February/2014 38

AdolC-ified ISSM performance - outlook

since these tests happened

� 60 - way runs on Pleiades

� transient runs tax the file system and sometimes that causes
crashes

� acc. to Eric Larour: ”You have to talk to it with love, and
then you get numbers”

� resilience/adjoint integrated checkpointing isn’t there yet, but
is in the works IOW ... to be continued ...

Adolc/ISSM - Utke/Larour - February/2014 38

	outline
	Greenland
	basics & examples
	simple forward
	operator overloading
	simple reverse
	Adol-C example

	ISSM
	External Solvers
	MPI
	AMPI

